Откуда берется электричество в россии и основные способы получения электроэнергии в россии

EES EAEC. Установленная мощность-брутто электростанций России, 1940—2019 гг. (по данным Росстата), млн кВт

EES EAEC. Производство электроэнергии-брутто электростанциями России, 1940—2019 гг. (по данным Росстата), млрд. кВт∙ч

Решающая роль в энергетическом комплексе принадлежит электроэнергетике, развитие которой определяет уровень научно-технического прогресса, качество жизни населения.

Базовым понятием в электроэнергетике является установленная мощность электростанций (в дальнейшем для краткости может использоваться термин «мощность»).

Период 1991—2019 гг. характеризуется существенным снижением интегрального критерия эффективности функционирования электрических станций России — числа часов использования установленной мощности, а также конечного потребления электрической энергии и, в частности, в промышленности и сельском хозяйстве.

EES EAEC Динамика числа часов использования установленной мощности-брутто электростанций России, 1990—2019 гг., часы

EES EAEC. Потребление электроэнергии в отдельных секторах России. 1990—2018 гг. (по данным IEA), млн. кВт∙ч

EES EAEC. Средние цены производителей на электрическую и тепловую энергию (по данным Росстата), 1998—2019 гг.

При этом отмечается значительное увеличение цен на электрическую и тепловую энергию.

В числе пяти временны́х этапов развития и функционирования электроэнергетики России, четыре пришлось на советский период:

1921—1940 гг. — план ГОЭЛРО. Опережающее развитие энергетики. Строительство 30 крупных районных станций. Развитие централизованного энергоснабжения. Использование местных видов топлива. Если в 1921 г. выработка электроэнергии на электростанциях России (в границах бывшего СССР) составляла 0,5 млрд кВт·ч, то уже к 1940 г. в бывшем СССР она достигла 48,6 млрд кВт·ч, а в России (в действующих границах) — 30,8 млрд кВт·ч;

1941—1950 гг. — во время Великой Отечественной войны разрушено 60 электростанций. На конец 1941 г. в бывшем СССР установленная мощность сокращается почти в 2 раза. Однако в 1946 г. по установленной мощности и объёму производства электроэнергии в бывшем СССР достигаются показатели довоенного уровня. В России уже в 1944 г. производство электроэнергии превысило довоенный объём и составило 32,7 млрд кВт·ч;

1951—1965 гг. — концентрация энергоснабжения за счет создания объединённых энергосистем (ОЭС), строительство мощных тепловых электростанций. Начало развития атомной энергетики. Формирование Единой электроэнергетической системы (ЕЭС) СССР (1956 г.), ОЭС «Мир» (1962) в рамках стран-членов СЭВ. На конец 1950 г. производство электроэнергии в России составило 63,4 млрд кВт·ч и в 1965 г. — 332,8 млрд кВт·ч;

1966—1991 гг. — внедряется блочная схема компоновки электростанций. Единичная мощность блоков непрерывно повышается. Используется пар сверхкритических параметров. Создается Центральное диспетчерское управление (ЦДУ) ЕЭС СССР. Завершается формирование ОЭС «Мир» (1972) и ЕЭС СССР (1978). Строительство ЛЭП ультравысокого напряжения. Если в 1965 г., объём производства электроэнергии был равен 332,8 млрд кВт·ч, спустя 25 лет в 1990 г. выработка электроэнергии составила 1082,2 млрд кВт·ч. К этому временному этапу относится и начало внедрения рыночных отношений — создается федеральный оптовый рынок электроэнергии и мощности (ФОРЭМ).

*Примечание: В границах бывшего СССР

Распределение электрогенерирующих производств по России

EES EAEC. Распределение установленной мощности электростанций по округам России за 2019 г., проценты

EES EAEC. Ранжирование установленной мощности электростанций регионов России за 2019 год (в порядке убывания), МВт

На конец 2019 года в составе ЕЭС России работали семь объединённых энергосистем (ОЭС). Параллельно работают ОЭС Центра, ОЭС Cредней Волги, ОЭС Урала, ОЭС Северо-Запада, ОЭС Юга, ОЭС Сибири. Параллельно работающие в составе ОЭС Востока энергосистемы образуют отдельную синхронную зону.

Основные тенденции в электроэнергетике России

EES EAEC. Производство электроэнергии-брутто электростанциями России, 1990—2019 гг. (по данным Росстата), млрд кВт∙ч

EES EAEC. Структура установленной мощности электростанций за 2019 г., России, проценты

EES EAEC. Структура производства электроэнергии-брутто в России за 2019 г., проценты

Структура установленной мощности электростанций и производства электроэнергии в России

На конец 2019 г. на долю тепловых электростанций (ТЭС) в России пришлось 69,6 % в структуре установленной мощности и 63,7 % в структуре производства электроэнергии.

В соответствии с приведёнными выше данными СО ЕЭС России в ЕЭС России в структуре установленной мощности ТЭС по технологиям 78,1 % составляют паросиловые турбины, 16 % — парогазовые, 5,2 % газовые и 0,8 % — прочие.

EES EAEC. Динамика установленной мощности-брутто тепловых электростанций России, 1970—2019 гг., млн. кВт

EES EAEC. Динамика производства электроэнергии-брутто тепловыми электростанциями России, 1970—2019 гг., млрд кВт·ч

Крупнейшие конденсационные электростанции (КЭС) и электростанции с комбинированной выработкой тепловой и электрической энергии (ТЭЦ) России (1000 МВт и выше) на конец 2019 г. приведены на карте Google Maps: EES EAEC: Крупнейшие электростанции России

Атомная энергетика как в мире, так и в России берет свое официальное начало с 1 января 1951 г. — начала строительства в Обнинске Калужской области России первой в мире атомной электростанции.

EES EAEC. Динамика установленной мощности-брутто атомных электростанций России (по данным Росстата), 1970—2019 гг., млн кВт

EES EAEC. Динамика производства электроэнергии-брутто на атомных электростанциях России (по данным Росстата), 1970—2019 гг., млрд кВт·ч

Установленная мощность-брутто действующих атомных электростанций на 1 января 2021 г. — 30 497 МВт, или 66,4 % от суммарной установленной мощности реакторов действующих АЭС, эксплуатируемых в границах бывшего СССР с учётом стран Балтии.

На конец 2019 г. на АЭС в России пришлось 11,0 % в структуре установленной мощности и 18,6 % в структуре производства электроэнергии. Динамика установленной мощности-брутто и производства электроэнергии-брутто атомных электростанций за период с 1970 по 2019 гг. приведена в соответствующих диаграммах.

EES EAEC. Динамика установленной мощности-брутто ГЭС России, 1970—2019 гг. (по данным Росстата), млн. кВт

EES EAEC. Динамика производства электроэнергии-брутто ГЭС России, 1970—2019 гг. (по данным Росстата), млрд. кВт·ч

На конец 2019 г. доля гидроэлектростанций в России в структуре установленной мощности электростанций — 18,8 %, в структуре производства электроэнергии — 17,5 %. Уровень использования общего технического гидроэнергопотенциала, рассчитанный исходя из производства электроэнергии-брутто на ГЭС за 2019 год, — 11,5 %.

Данные в этой статье приведены по состоянию на 2007-2010 годы.

Вы можете помочь, обновив информацию в статье.

Другие важнейшие разделы и сектора энергетики

Основой топливной и в целом внутренней энергетики на 2010-е остаётся эксплуатация значительных газовых месторождений Западной Сибири (Уренгойское, Ямбургское, Заполярное, в перспективе Бованенковское). В 2005 году добыча газа составила около 590 млрд м³, внутреннее потребление составило 386 млрд м³ — более половины всего энергопотребления в стране. Запасы природного газа на 2005 год оцениваются в размере 47,82 трлн м³, экспорт достигает значений 187 млрд м³/год. Кроме важнейших внутренних газопроводов «Средняя Азия — Центр», «Северное Сияние» и «Кавказ — Центр» для обеспечения надёжности поставок используются хранилища газа, из которых крупнейшее в Европе Касимовское ПХГ имеет рабочий объём 8,5 млрд м³. Действует сеть из более чем 218 автомобильных газонаполнительных компрессорных станций.

Крупнейшая газодобывающая и газотранспортная компания — государственная акционерная компания «Газпром».

Второй по значению для внутренней энергетики подотраслью является нефтяная промышленность, обеспечившая на 2005 год внутреннее потребление в размере около 110 млн т нефти и газового конденсата, что составило около 20 % полного потребления энергоресурсов.

Автомобильный транспорт — один из крупнейших конечных потребителей энергии

Крупнейшие нефтяные месторождения — Самотлорское, Приобское, Русское, Ромашкинское. Запасы жидких углеводородов на 2007 год оцениваются в размере не менее 9,5 млрд т, экспорт достигает значений 330 млн т/год.

Крупнейшие нефтяные компании России: государственные — «Роснефть» и «Газпром нефть», частные — «Лукойл», «Сургутнефтегаз», «Татнефть». Основную долю (93 %) транспорта жидких углеводородов контролирует государственная компания «Транснефть», оперирующая магистральными нефтепроводами. Крупную сеть нефтепродуктопроводов контролирует также государственная компания «Транснефтепродукт», ранее отдельная, а с 16 апреля 2007 года входящая в состав «Транснефти».

В стране действует 32 крупных нефтеперерабатывающих завода, общая их мощность составляет около 300 млн т, рабочая мощность на 2009 год — около 261 млн т.

На внутренний рынок в 2010 году было поставлено около 33 млн т дизельного топлива, 29 млн т бензина, 6,6 млн т мазута и 5 млн т керосина. Крупнейшие нефтеперерабатывающие заводы: Киришский НПЗ (рабочей мощностью 22 млн т), Омский НПЗ (19,5 млн т) и Нижегородский НПЗ (19 млн т).

Инновационные энергетические проекты России. Привлечение иностранных партнеров

Соглашение по реализации проекта было подписано в ноябре 2019 года между Санкт-Петербургом, «Газпром нефтью» и Агентством по технологическому развитию.

Проект Энерготехнохаба предусматривает создание цифрового центра по разработке новых решений в энергетическом секторе, в том числе в нефтегазовой промышленности. После регистрации на онлайн-платформе, компании получат доступ к бизнес-планам и в дальнейшем смогут предлагать свои разработки.

Интерес к проекту проявили более 20 компаний из различных стран. К созданию хаба подключились четыре петербургских вуза: «Санкт-Петербургский политехнический университет Петра Великого», «ИТМО», «Технологический институт и ГУАП». Планируется, что к 2030 году количество высокотехнологических компаний в Санкт-Петербурге увеличится в шесть раз.

Добыча угля и других горючих ископаемых

Несколько меньшую роль играет угольная промышленность, в 2005 году обеспечившая около 18 % потребности в топливе, поставив около 148 млн т топливного угля. Доказанные и разрабатываемые запасы угля в стране на 2006 год составляют около 157 млрд т, экспорт достигает 80 млн т/год. Крупнейшие разрабатываемые месторождения энергетического угля — месторождения Кузбасса и месторождения Канско-Ачинского угольного бассейна (Березовское, Бородинское, Назаровское).

Крупнейшие угледобывающие компании «СУЭК», «Кузбассразрезуголь», «Южкузбассуголь», «Южный Кузбасс».

Страна обладает значительными запасами горючих сланцев. Разведано около 35,47 млрд т, из них доказанных: в Ленинградской области — 3,6 млрд т, в Поволжье — 4,5 млрд т и республике Коми в Вычегодском бассейне — 2,8 млрд т. На Ленинградском и Кашпирском месторождениях имеются мощности, однако на 2007 год добыча практически не ведётся. Имеются крупные запасы природных битумов.

Перспективы топливной энергетики в России заключаются в использовании научных достижений для уменьшения потери топлива и сырья и вовлечения в эксплуатацию новых месторождений. Топливно-энергетическая промышленность оказывает значительное негативное влияние на окружающую среду: при добыче полезных ископаемых нарушается почвенный покров, целые природные ландшафты. При добыче и транспортировке нефти и газа происходит загрязнение атмосферы, почв и Мирового океана.

Читайте также:  Калмыцкий и Калмыцкий филиалы при Московском государственном гуманитарно-экономическом университете»

Энергетика возобновляемых источников

Дрова и сейчас являются основным источником энергии для российского села, особенно лесной зоны

Из возобновляемых ресурсов наиболее широкое применение имеет энергетическое использование древесины в виде дров. Это прежде всего отопление домов, приготовление пищи и подогрев воды в слаборазвитых сельскохозяйственных районах, где нет доступа к магистральному природному газу, относительно дорога доставка угля и имеются значительные лесные запасы.

Наиболее высокая продуктивность, где возможно эффективное выращивание энергетических лесов, отмечается на Северном Кавказе, в Алтайском крае и центре Европейской части.

Одним из перспективных направлений развития использования древесины можно считать технологии гидролиза.

Шатурская ГРЭС — крупнейшая в мире электростанция, способная работать на торфе

До 1990-х годов ощутимую роль в топливной энергетике занимала торфяная промышленность, годовая добыча которой в середине 1970-х достигала 90 млн тонн. преимущественно топливного сырья, на середину 2000-х добыча торфа не превышает 5 млн тонн в год. Разведанные запасы торфа свыше 150 млрд т. (40 % влажности), ежегодно образуется до 1 млрд м³ торфа, основные запасы сконцентрированы в Западной Сибири и на северо-западе Европейской части. Ресурсы торфяных месторождений несколько более концентрированы, однако при этом зачастую ещё более труднодоступны, чем лесные.

Некоторое количество торфа сжигается на электростанциях: Шатурская ГРЭС в 2005 году использовала 0,67 млн т., ТГК-5 в 2006 году применила 0,57 млн т.

Все российские геотермальные электростанции расположены на территории Камчатки и Курил. Крупнейшей геотермальной станцией в стране является Мутновская ГеоЭС на Камчатке. Её проектная мощность составляет 80 МВт, установленная — 50 МВт.

Коммерчески целесообразным является размещение геотермальных установок в Западной Сибири, на Северном Кавказе, Камчатке и Курильских островах; суммарный электропотенциал пароводных терм только Камчатки оценивается в 1 ГВт рабочей электрической мощности.

На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки.

На 20 месторождениях ведётся промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край). По имеющимся данным, в Западной Сибири имеется подземное море площадью 3 млн м² с температурой воды 70—90 °C.

На конец 2005 года установленная мощность по прямому использованию тепла составляет свыше 307 МВт. Российский геотермальный потенциал реализован в размере чуть более 80 МВт установленной мощности (2009) и около 450 млн кВт·ч годовой выработки (2009).

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Технический потенциал ветровой энергии России оценивается в размере свыше 50 трлн кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 % производства электроэнергии всеми электростанциями России. К перспективным зонам для строительства в Росcии ветрогенераторов относятся побережья морей, острова Северного Ледовитого океана.

Развитию масштабной ветроэнергетики в стране препятствует относительная доступность природного газа, снижающая интерес к ветрогенерации. Однако в таких отдалённых районах, не имеющих газоснабжения и выхода в энергосистему, как, например, Колыма или отдельные районы Камчатки, где действует маневренная гидроэнергетика, ветроэлектростанции могут успешно дополнять имеющуюся систему.

Установленная мощность действующих ветряных электростанций в стране составляет (на 2018 год) около 134 МВт; суммарная выработка не превышает 200 млн кВт·ч/год.

Наибольшей мощностью обладают (на 2020 год): Адыгейская ВЭС (150 МВт), Ульяновская ВЭС (35 МВт, Ульяновская область).

Крупнейшие действующие ветропарки расположены в Крыму (см. Альтернативная энергетика Крыма), Ульяновской области (Ульяновская ВЭС), Камчатском крае, Чукотском автономном округе (Анадырская ВЭС), Башкирии (ВЭС Тюпкильды).

Крупнейшая солнечная электростанция России, по состоянию на 2021 год, эксплуатируется в Республике Калмыкия, это Аршанская СЭС с установленной мощностью 115,6 МВт, вторая СЭС «Перово» с установленной мощностью 105,6 МВт, третья Старомарьевская СЭС с установленной мощностью 100МВт. Мощность более 50 МВт имеют также Самарская СЭС (Самарская область) — 75 МВт, СЭС «Николаевка» (Крым) — 69,7 МВт, Ахтубинская СЭС (Астраханская область) — 60 МВт, Фунтовская СЭС (Астраханская область) — 60 МВт.

Крупнейшие солнечные электростанции расположены в Башкирии (Бурибаевская, Бугульчанская, Исянгуловская СЭС), Оренбургской области, Республике Алтай.

Сложно переоценить значение электричества. Скорее, мы подсознательно недооцениваем его. Ведь практически вся окружающая нас техника работает от электросети. Об элементарном освещении и говорить не приходится. А вот производство электроэнергии нас практически не интересует. Откуда берется и как сохраняется (и вообще, возможно ли сохранить) электричество? Сколько реально стоит выработка электроэнергии? И насколько это безопасно для экологии?

Экономическое значение

Со школьной скамьи нам известно, что электроэнерговооруженность – один из основных факторов получения высокой производительности труда. Электроэнергетика – стержень всей деятельности человека. Нет ни одной отрасли, которая бы обходилась без нее.

Развитость этой отрасли свидетельствует о высокой конкурентоспособности государства, характеризует темпы роста производства товаров и услуг и почти всегда оказывается проблемным сектором экономики. Затраты на производство электроэнергии зачастую складываются из значительных первоначальных инвестиций, которые будут окупаться долгие годы. Несмотря на все свои ресурсы, Россия не исключение. Ведь значительную долю экономики составляют именно энергоемкие отрасли.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Статистика говорит нам о том, что в 2014 году производство электроэнергии Россией еще не вышло на уровень советского 1990 года. По сравнению с Китаем и США РФ производит — соответственно — в 5 и в 4 раза меньше электричества. Почему так происходит? Специалисты утверждают, что это очевидно: высочайшие непроизводственные расходы.

Кто потребляет электричество

Конечно, ответ очевиден: каждый человек. Но ведь сейчас нас интересуют промышленные масштабы, а значит, те отрасли, которым в первую очередь необходима электроэнергия. Основная доля приходится на промышленность – около 36%; ТЭК (18%) и жилой сектор (чуть больше 15%). Оставшийся 31% выработанного электричества приходится на непроизводственные отрасли, железнодорожный транспорт и потери в сетях.

При этом стоит учитывать, что в зависимости от региона структура потребления существенно меняется. Так, в Сибири действительно более 60% электричества используется промышленностью и ТЭК. А вот в европейской части страны, где расположено большее количество населенных пунктов, самым мощным потребителем оказывается жилой сектор.

Электростанции – основа отрасли

Производство электроэнергии в России обеспечивается почти 600 электростанциями. Мощность каждой превышает 5 МВт. Общая мощность всех электростанций составляет 218 ГВт. Как же мы получаем электроэнергию? В России используются такие типы электростанций:

Когда речь заходит об альтернативных источниках электроэнергии, на ум приходят романические картинки с ветряками и солнечными батареями. Тем не менее, в определенных условиях и местностях это наиболее выгодные виды производства электроэнергии.

Тепловые электростанции

Исторически сложилось так, что тепловые электростанции (ТЭС) занимают основное место в производственном процессе. На территории России обеспечивающие производство электроэнергии ТЭС классифицируются по таким признакам:

Еще одним важнейшим показателем считается степень участия в покрытии графика электронагрузки. Здесь выделяются базовые ТЭС с минимальным временем использования в году 5000 час; полупиковые (их еще называют маневренные) – 3000-4000 час в году; пиковые (используются только в часы максимальной нагрузки) – 1500-2000 час в году.

Технология производства энергии из топлива

Конечно, в основном производство, передача и использование электроэнергии потребителями происходит за счет работающих на органическом топливе ТЭС. Их различают по технологии производства:

Паротурбинные установки самые распространенные. Они работают на всех видах топлива, включая не только уголь и газ, но и мазут, торф, сланцы, дрова и древесные отходы, а также продукты переработки.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Органическое топливо

Самый большой объем производства электроэнергии приходится на Сургутскую ГРЭС-2, мощнейшую не только на территории РФ, но и на весь Евразийский континент. Работая на природном газе, она выдает до 5600 МВт электроэнергии. А из угольных наибольшей мощностью обладает Рефтинская ГРЭС – 3800 МВт. Более 3000 МВт могут давать еще Костромская и Сургутская ГРЭС-1. Следует отметить, что аббревиатура ГРЭС не изменилась со времен Советского Союза. Она расшифровывается, как государственная районная электростанция.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Во время реформы отрасли производство и распределение электроэнергии на ТЭС должно сопровождаться техническим перевооружением действующих станций, их реконструкцией. Также среди первоочередных задач стоит строительство новых генерирующих энергию мощностей.

Электричество из возобновляемых ресурсов

Электроэнергия, полученная с помощью ГЭС, является важнейшим элементом стабильности единой энергосистемы государства. Именно гидроэлектростанции могут за считаные часы увеличить объемы производства электроэнергии.

Большой потенциал российской гидроэнергетики заключается в том, что на территории страны расположено почти 9% мировых запасов воды. Это второе место в мире по наличию гидроресурсов. Такие страны, как Бразилия, Канада и США, остались позади. Производство электроэнергии в мире за счет ГЭС несколько осложняется тем, что наиболее благоприятные места для их строительства существенно удалены от населенных пунктов или промышленных предприятий.

Тем не менее, благодаря электроэнергии, произведенной на ГЭС, стране удается сэкономить около 50 млн тонн топлива. Если бы удалось освоить весь потенциал гидроэнергетики, Россия могла бы экономить до 250 млн тонн. А это уже серьезная инвестиция в экологию страны и гибкую мощность энергетической системы.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Гидростанции

Строительство ГЭС решает множество вопросов, не связанных с выработкой энергии. Это и создание систем водоснабжения и водоотведения целых регионов, и строительство ирригационных сетей, столь необходимых сельскому хозяйству, и контроль паводков и т. д. Последнее, кстати, имеет немаловажное значение для безопасности людей.

Читайте также:  ТЭЦ и 1. ТЭЦ (ТЭЦ, котельные)

Производство, передача и распределение электроэнергии в настоящее время осуществляется 102 ГЭС, единичная мощность которых превышает 100 МВт. Общая же мощность гидроустановок России приближается к 46 ГВт.

Страны по производству электроэнергии регулярно составляют свои рейтинги. Так вот, Россия сейчас занимает 5-е место в мире по выработке электричества из возобновляемых ресурсов. Наиболее значимыми объектами следует считать Зейскую ГЭС (она не только первая из построенных на Дальнем Востоке, но еще и довольно мощная – 1330 МВт), каскад Волжско-Камских электростанций (общее производство и передача электроэнергии составляет более 10,5 ГВт), Бурейскую ГЭС (2010 МВт) и т. д. Отдельно хочется отметить и Кавказские ГЭС. Из нескольких десятков работающих в этом регионе наиболее выделяется новая (уже введенная в эксплуатацию) Кашхатау ГЭС мощностью более 65 МВт.

Особого внимания заслуживают и геотермальные ГЭС Камчатки. Это очень мощные и мобильные станции.

Самые мощные ГЭС

Как уже отмечалось, производство и использование электроэнергии затруднено удаленностью основных потребителей. Тем не менее, государство занято развитием этой отрасли. Не только реконструируются имеющиеся, но и строятся новые ГЭС. Они должны освоить горные реки Кавказа, многоводные уральские реки, а также ресурсы Кольского полуострова и Камчатки. Среди самых мощных отметим несколько ГЭС.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Саяно-Шушенская им. П. С. Непорожнего построена в 1985 году на реке Енисей. Ее нынешняя мощность пока не достигает расчетных 6000 МВт в связи с реконструкцией и ремонтом после аварии 2009 года.

Производство и потребление электроэнергии Красноярской ГЭС рассчитано на Красноярский алюминиевый завод. Это единственный «клиент» введенной в эксплуатацию в 1972 году ГЭС. Ее расчетная мощность — 6000 МВт. Красноярская ГЭС единственная, на которой установлен судоподъемник. Он обеспечивает регулярное судоходство по реке Енисей.

Братская ГЭС введена в эксплуатацию в далеком 1967 году. Ее плотина перекрывает реку Ангару недалеко от города Братска. Как и Красноярская ГЭС, Братская работает на нужды Братского алюминиевого завода. Ему уходят все 4500 МВт электроэнергии. А еще этой гидростанции поэт Евтушенко посвятил поэму.

На реке Ангаре расположилась еще одна ГЭС – Усть-Илимская (мощность чуть более 3800 МВт). Строительство ее началось в 1963 году, а закончилось в 1979-м. Тогда же и началось производство дешевой электроэнергии для основных потребителей: Иркутского и Братского алюминиевых заводов, Иркутского авиастроительного завода.

Волжская ГЭС расположена севернее Волгограда. Ее мощность почти 2600 МВт. Эта крупнейшая в Европе гидроэлектростанция работает с 1961 года. Неподалеку от Тольятти функционирует самая «старая» из крупных ГЭС – Жигулевская. Она введена в эксплуатацию еще в 1957 году. Мощность ГЭС в 2330 МВт покрывает потребности в электричестве Центральной части России, Урала и Средней Волги.

А вот необходимое для нужд Дальнего Востока производство электроэнергии обеспечивает Бурейская ГЭС. Можно сказать, что она совсем еще «юная» — ввод в эксплуатацию состоялся только в 2002 году. Установленная мощность этой ГЭС – 2010 МВт электроэнергии.

Экспериментальные морские ГЭС

Гидроэнергетическим потенциалом обладают и множественные океанические и морские заливы. Ведь перепад высот во время прилива в большинстве из них превышает 10 метров. А это значит, что можно вырабатывать огромное количество энергии. В 1968 году была открыта Кислогубская экспериментальная приливная станция. Ее мощность составляет 1,7 МВт.

Мирный атом

Российская атомная энергетика является технологией полного цикла: от добычи урановых руд до производства электроэнергии. Сегодня в стране работает 33 энергоблока на 10 АЭС. Общая установленная мощность составляет чуть больше 23 МВт.

Максимальное количество электроэнергии АЭС было выработано в 2011 году. Цифра составила 173 млрд кВт/ч. Производство электроэнергии на душу населения атомными станциями выросло на 1,5% по сравнению с предыдущим годом.

Конечно, приоритетным направлением развития атомной энергетики является безопасность эксплуатации. Но и в борьбе с глобальным потеплением АЭС играют значительную роль. Об этом постоянно говорят экологи, которые подчеркивают, что только в России удается сократить выброс углекислого газа в атмосферу на 210 млн тонн в год.

Атомная энергетика получила свое развитие в основном на Северо-Западе и в европейской части России. В 2012 году всеми АЭС было выработано около 17% всей произведенной электроэнергии.

Атомные электростанции России

Крупнейшая АЭС России расположена в Саратовской области. Ежегодная мощность Балаковской АЭС составляет 30 млрд кВт/ч электроэнергии. На Белоярской АЭС (Свердловская обл.) сейчас работает только 3-й блок. Но и это позволяет назвать ее одной из самых мощных. 600 МВт электроэнергии получают благодаря реактору на быстрых нейтронах. Стоит отметить, что это был первый в мире энергоблок с быстрыми нейтронами, установленный для получения электричества в промышленных масштабах.

На Чукотке установлена Билибинская АЭС, которая вырабатывает 12 МВт электроэнергии. А Калининскую АЭС можно считать недавно построенной. Ее первый блок был введен в эксплуатацию в 1984 году, а последний (четвертый) лишь в 2010-м. Суммарная мощность всех энергоблоков составляет 1000 МВт. В 2001 году была построена и введена в эксплуатацию Ростовская АЭС. С момента подключения второго энергоблока — в 2010 году — ее установленная мощность превысила 1000 МВт, а коэффициент использования мощности составил 92,4%.

Энергия ветров

Экономический потенциал ветровой энергетики России оценивается в 260 млрд кВт/ч в год. Это почти 30% всей производимой сегодня электроэнергии. Мощность всех работающих в стране ветроустановок составляет 16,5 МВт энергии.

Особенно благоприятны для развития этой отрасли такие регионы, как побережье океанов, предгорные и горные районы Урала и Кавказа.

Объёмы производства электроэнергии

Нетрадиционные источники энергии

Влияние отрасли на окружающую среду

Перспективы развития электроэнергетики

Объёмы производства электроэнергии

Современный энергетический комплекс России по объему производства и экспорта электроэнергии занимает 4 место в мире. Эта одна из базовых областей, которая обеспечивает государство энергетическими ресурсами. В отрасли энергетики занято более 2 млн. человек.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Единица измерения объема электроэнергии – Вт(ватт) и КВт (киловатт). В промышленных масштабах используют МВт (мегаватт) – 1 млн. ватт, ГВт (гигаватт) – 1 млрд. ватт.

Энергосистема включает в себя сотни электрических станций, работающих на различных видах топлива.

Типы электростанций

Электростанция – это огромный энергетический комплекс, в состав которого входят установки, оборудование, аппаратура, используемые для получения, преобразования и транспортировки электроэнергии. Все составляющие расположены в специальных зданиях, строениях и компактно размещены на общей территории.

На сегодняшний день на территории современной России функционирует 846 крупных электростанций. Их общая мощность рассчитана на выработку  250 ГВт электрической энергии.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

В зависимости от источника энергии выделяют следующие типы электростанций.

Тепловые электростанции (ТЭС)

ТЭС – преобладающий тип электростанций. На их долю приходится 2/3 от всего объема производства электроэнергии в стране. Их расположение по России зависит от экономического потенциала региона (шт.):

  • Центр – 74;
  • Средняя Волга – 36;
  • Урал – 98;
  • Северо-Запад – 41;
  • Крым – 10;
  • Сибирь – 53;

Кроме того 25 ТЭС функционируют на Сахалине, Камчатке, Чукотке, территории децентрализованного электроснабжения. На расположение ТЭС влияет сырьевой и потребительский фактор. На потребителя ориентированы Рязанская, Костромская, Конаковская, Заинская, Рефтинская, Троицкая ТЭС. На базе сырья функционируют Назаровская, Сургутская, Березовская, Харанорская, Гусиноозерская, Ирша-Бородинская ТЭС.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Существует несколько типов тепловых электростанций:

Для ТЭС характерно много недостатков:

В России сформирована централизованная система теплоснабжения. Интересно, что источником тепловой энергии служат сами же ТЭС и большие котельные. На их долю приходится 92,4% производства от всей потребляемой тепловой энергии.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

В качестве сырья для ТЭС используют:

  • природный газ – 73%;
  • мазут – 3%;
  • торф – 1%.

Сейчас тепловая энергетика в России находится на стадии усовершенствования. Старое оборудование, которое износило себя за несколько десятилетий, заменяется более современным. Устанавливаются новые энергоблоки с производительностью до 800 МВт.

В Российской Федерации крупнейшими тепловыми электростанциями являются:

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Гидроэлектростанции (ГЭС)

ГЭС – это второй по значимости тип электростанций в России. Для работы используется энергия воды, которая преобразуется в электрический ток. Вода – это возобновляемый ресурс, а для управления станцией не нужно большого количества людей.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

В нашей стране большая часть ГЭС сосредоточена в Сибири и на Востоке. Реки там имеют мощный энергетический потенциал.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Электричество, получаемое на ГЭС, считается самым дешевым. Его стоимость в 5-6 раз меньше того, которое вырабатывают на ТЭС. Чтобы запустить гидроэлектростанцию, потребуется не более 5 минут. Однако и у ГЭС тоже есть свои недостатки:

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

На мощных российских реках строят каскады из ГЭС. Самые известные — Ангаро-Енисейский каскад (включает Красноярскую, Братскую, Усть-Илимскую и Саяно-Шушенскую ГЭС) и Волжский каскад (включает Угличскую, Рыбинскую, Саратовскую, Иваньковскую, Волжскую ГЭС).

Крупнейшие гидроэлектростанции России:

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Атомные электростанции (АЭС)

АЭС – один из 3 основных типов электростанций в России. На их долю приходится около 19% всей производимой электроэнергии в стране. На таких станциях атомная энергия преобразуется в электрическую. В качестве топлива используется уран.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Основные недостатки атомных электростанций:

На данный момент в России функционирует 11 атомных электростанций, состоящих из 38 энергоблоков общей мощностью 30,3 ГВт. Самая первая АЭС была запущена в 1954 году в Обнинске, в 2002 году ее полностью остановили. На базе Обнинской АЭС планируется создание музея.

Читайте также:  «Стоимость электроэнергии в Бурятии очень доступная, благодаря чему Бурятия входит в десятку самых рентабельных регионов России по расходам на освещение»

На территории России построили единственную в мире плавучую атомную теплоэлектростанцию – ПАТЭС. Она состоит из береговой инфраструктуры и плавучего энергоблока «Академик Ломоносов».

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

АЭС в Российской Федерации помогают в борьбе с глобальным потеплением. Благодаря им ежегодно предотвращается выброс в атмосферу 210 млн. тонн углекислого газа.

Альтернативные (нетрадиционные) источники энергии – процессы и вещества, существующие в природном пространстве, с помощью которых можно получать необходимую энергию. Простыми словами – это возобновляемые источники энергии. К ним относят:

Использование альтернативных источников энергии позволяет снизить зависимость человека от невозобновляемых  ресурсов. Кроме того такие источники положительно сказываются на экологии окружающей среды.

Итак, давайте посмотрим, какие же альтернативные источники энергии используются в нашей стране:

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Энергетические системы (ОЭС)

Вся энергосистема России состоит из единой энергетической системы (ЕЭС) и территориально изолированных энергосистем.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

ЕЭС включает 71 региональную энергосистему, которые образуют 7 объединенных энергетических систем (ОЭС):

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Все системы соединяются высоковольтными линиями передачи электроэнергии с напряжением 220-750 кВ и более. Они функционируют в синхронном режиме. По данным на 2020 год мощность всех электростанций страны составила 246 342, 45 МВт.

Преимущества единой энергетической системы России:

Управление энергетической системой осуществляется филиалами АО «СО ЕЭС».Вместе с ЕЭС нашей страны функционируют энергосистемы Белоруссии, Казахстана, Украины, Азербайджана, Литвы, Грузии, Латвии, Эстонии, Монголии. Через казахскую энергосистему параллельно с российской ЕЭС работают системы Киргизии и Узбекистана. А через украинскую энергосистему осуществляется связь с системой Молдавии.

К числу основных технологически территориальных изолированных энергетических систем относят:

Влияние отрасли на окружающую среду

Каждый тип электростанций оказывает на окружающую среду разное воздействие. Больше всего вреда наносят ТЭС. В результате использования топлива в качестве ресурса в атмосферу выбрасываются небольшие элементы золы. Чтобы уменьшить выбросы вредных частичек, начали производить фильтры с высоким  уровнем очистки (95-99%). Но полноценно этим решить проблему не удалось. На многих станциях, работающих на угле, фильтры находятся в плохом состоянии и выполняют свои функции всего на 80%.

Для строительства ГЭС требуется затопление больших территорий – создание водохранилищ. Большая часть такого водного объекта – мелководье. Вода в них сильно прогревается, создаются условия для размножения и роста водорослей. Требуется регулярная чистка воды, что приводит к затоплению еще больших площадей. Берега часто обваливаются, поэтому вблизи водохранилищ местность заболачивается.

Самый большой вред от АЭС приносит его горючее, поэтому для безопасности важно его надежно изолировать. Чтобы решить задачу, топливо распределяется по брикетам. Их изготавливают из материалов, которые задерживают долю продуктов деления радиоактивных веществ. Такие брикеты помещают в тепловыделяющие отделения из сплава циркония. Если происходит утечка радиоактивных элементов, они попадут в охлаждающий реактор, способный выдержать высокое давление.

Откуда берется электричество в россии и основные способы получения электроэнергии в россии

Чтобы уменьшить негативное влияние электроэнергетики на окружающую среду, разрабатывается комплекс мер:

Перспективы развития электроэнергетики

Отрасль электроэнергетики регулярно требует от государства действий, направленных на ее будущее развитие. Программа развития электроэнергетики должна способствовать выходу на новый уровень, обеспечивать национальную безопасность и соответствовать социально-экономическому статусу страны.

Чтобы достичь поставленных задач, предусмотрены следующие меры:

Цели и перспективы развития электроэнергетики в России:

Развитие современной электроэнергетики России активно продолжается. Строятся и вводятся в эксплуатацию усовершенствованные новые электростанции. В стране проводят реформы для преобразования отрасли. Государство выделяет субсидии для реконструкции и модернизации действующих станций.

Чтобы более точно прогнозировать производственные показатели, выручку и себестоимость генерирующих компаний для их последующего фундаментального анализа, необходимо понимать как производится электроэнергия и какие факторы влияют на ее выработку.

Производство электроэнергии

Электрическая энергия, по большей части, образуется за счет механической энергии от вращения турбины. Отличия лишь в том, за счет чего приводится в движение эта турбина.

Производство электроэнергии можно разделить по способам получения на 2 основных типа: из невозобновляемых источников энергии (использование в качестве топлива такого сырья как природный газ, уголь, мазут или дизельное топливо) и из возобновляемых источников энергии, где в качестве ресурсов используется энергия воды, ветра, солнца и пр.

Еще есть атомная энергетика, где в качестве источника электроэнергии используется ядерная энергия, выделяемая при делении атомов. Подробно рассмотрен этот тип не будет, т.к. в России все атомные электростанции (АЭС) принадлежат государственной корпорации «Росатом», акции которой не котируются на Московской бирже.

Тепловая генерация

К производству электроэнергии из невозобновляемых источников относится тепловая генерация. Электричество производится на тепловых электростанциях (ТЭС), которые бывают двух типов: конденсационные (КЭС) и теплофикационные (ТЭЦ). Принцип работы одинаковый, а отличие лишь в том, что КЭС производят в основном электроэнергию, а ТЭЦ еще и тепловую энергию, используемую для отопления и горячего водоснабжения. КЭС называют ГРЭС — государственная районная электростанция, которые часто можно спутать с ГЭС — гидроэлектростанция, о них будет рассказано другой части статьи.

На данный момент тепловая генерация — это самый популярный способ производства энергии основными генерирующими компаниями, которые торгуются на Московской бирже («Интер РАО», «РусГидро», «Юнипро», «Мосэнерго», «ОГК-2», «ТГК-1», «Энел Россия»).

На картинке представлена схема работы компании «Мосэнерго»:

В тепловой генерации, как следует из названия, приводит в движение турбину тепловая энергия в виде пара, которая образуется в результате сжигания органического топлива.

Более детальная схема работы ТЭЦ «Мосэнерго» представлена на картинке:

Все больше компаний, акции которых торгуются на Московской бирже, на своих ТЭС переходят на газ, как более экологически чистое топливо, постепенно отказываясь от угля и прочих видов топлива. Это важно, т.к. львиную долю в себестоимости генерирующих компаний составляет топливообеспечение, которое формируется в зависимости от цен, в основном, на газ.

Если ТЭЦ производят электроэнергию и тепло, то котельные производят только тепловую энергию, которая направляется потребителям для отопления помещений и обеспечения горячего водоснабжения.

Принцип работы котельной «Мосэнерго» представлен на рисунке:

Котельные существенно уступают в энергоэффективности ТЭЦ, которые вырабатывают еще и электроэнергию. Поэтому компании, у которых еще есть котельные постепенно от них отказываются, перенаправляя нагрузку на ТЭЦ, что позволяет повысить эффективность работы и экономит топливо.

Перейдем к рассмотрению производства электроэнергии благодаря возобновляемым источникам энергии. Так называемая «зеленая» энергия образуется за счет постоянно восстанавливающихся или неиссякаемым по человеческим меркам ресурсов. Это может быть поток воды, ветер, солнечный свет или тепловая энергия недр Земли.

Гидрогенерация

На гидроэлектростанциях (ГЭС) вращает турбину поток воды. Обычно строится плотина, которая перекрывает реку. В месте перекрытия образуется водохранилище. В плотине есть специальные водозаборные отверстия, через которые вода по трубам поступает к турбине, вращает ее и продолжает свой путь обратно в русло реки, расположенное ниже уровня водохранилища. Вращающаяся турбина приводит в движение генератор, который, непосредственно, и вырабатывает электроэнергию. Таким образом энергия водного потока преобразуется в электрическую.

Схема работы гидроэлектростанции (ГЭС):

На динамику выработки электроэнергии ГЭС влияет уровень воды в водохранилищах. Чем он выше, тем больше выработка.

Из достоинств стоит отметить дешевизну электроэнергии по сравнению с тепловой генерацией.

В России явным лидером в гидрогенерации является «РусГидро».

Ветряная генерация

На ветряных электростанциях (ВЭС) в движение турбину приводит ветер. Ветряная электростанция представляет собой ветропарк, который состоит из нескольких ветрогенераторов. Принцип работы простой: ветер вращает лопасти, которые соединены с генератором, производящим электроэнергию. Необходимая скорость ветра для размещения ветряной электростанции составляет от 4,5 м/с. Так как скорость ветра возрастает с повышением высоты, то ВЭС стараются строить на возвышенности, а сами ветрогенераторы высотой 30-60 метров.

Схема работы ветрогенератора:

На российском рынке на ветряную генерацию делает ставку и активно развивает данное направление «Энел Россия».

Следующие виды генерации электроэнергии не используются в российской энергетике широко.

Солнечная генерация

Солнечные электростанции (СЭС) состоят из большого количества солнечных батарей, которые чаще всего представляют собой фотоэлемент, являющийся полупроводниковым устройством, преобразующим солнечную энергию в электрическую.

Отличительной особенностью от других видов генераций, является иной принцип преобразования энергии без использования турбин. Из недостатков следует отметить зависимость от погодных условий и времени суток, сезонность в средних и высоких широтах, необходимость использования довольно большой площади.

В России солнечную генерацию использует «РусГидро».

Геотермальная генерация

На геотермальных электростанциях (ГеоТЭС) электрическая энергия вырабатывается за счет тепловой энергии из недр Земли. Принцип работы аналогичен тепловым электростанциям, но нет необходимости в сжигании топлива, т.к. тепло уже имеется в виде пара или горячей воды, благодаря гейзерам.

В России ГеоТЭС расположены в Камчатском крае и принадлежат ПАО «Камчатскэнерго», которое входит в группу «РусГидро».

Ниже представлена сводная таблица с разбивкой установленных мощностей основных генерирующих компаний, представленных на Московской бирже, по видам производства энергии:

Основным типом производства энергии является тепловая генерация. Гидрогенерация представлена 2-мя компаниями: «РусГидро», где гидрогенерация составляет более 77% от общей мощности, и «ТГК-1», где гидрогенерация составляет более 41%. Ветряная генерация используется «Интер РАО», но в ближайшей перспективе «Энел Россия» вырвется в лидеры, т.к. в 2021 году вводится в эксплуатацию Азовская ВЭС мощностью 90 МВт, а в следующие 3-4 года планируется достроить еще 2 ветропарка общей мощностью 272 МВт.

В следующей статье мы рассмотрим основные источники заработка генерирующих компаний в России

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *