Фактические потери электроэнергии

Фактические (отчетные) потери электроэнергии — разность между электроэнергией, поступившей в сеть, и электроэнергией, отпущенной потребителям, определяемая по данным системы учета поступления и полезного отпуска электроэнергии.

Технические потери электроэнергии — потери электроэнергии, обусловленные физическими процессами в проводах и электрооборудовании, происходящими при передаче электроэнергии по электрическим сетям.

Расход электроэнергии на СН подстанций — расход электроэнергии, необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала, определяемый по показаниям счетчиков, установленных на трансформаторах СН подстанций.

Система учета электроэнергии на объекте — совокупность измерительных комплексов, обеспечивающих измерение поступления отпуска электроэнергии на объекте и включающих в себя измерительные ТТ, ТН, электросчетчики, автоматизированные системы учета, соединительные провода и кабели.

Потери электроэнергии, обусловленные погрешностями приборов ее учета — недоучет электроэнергии, обусловленный техническими характеристиками и режимами работы приборов учета электроэнергии на объекте (отрицательная систематическая составляющая погрешности системы учета).

Технологические потери — сумма технических потерь, расхода электроэнергии на СН подстанций и потерь, обусловленных погрешностями системы учета электроэнергии.

Коммерческие потери — потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате электроэнергии и другими причинами в сфере организации контроля потребления энергии.

Укрупненная структура фактических потерь электроэнергии — представление фактических потерь в виде четырех составляющих: технических потерь, расхода электроэнергии на СН подстанций, потерь, обусловленных погрешностями системы учета электроэнергии на объекте, и коммерческих потерь.

Территориально-схемная структура фактических потерь электроэнергии — представление укрупненных составляющих отдельно по различным объектам сети (районам, питающим центрам, фидерам и т. п.).

Групповая структура технических потерь электроэнергии — представление технических потерь в виде составляющих, объединенных общим признаком: одинаковым номинальным напряжением, типом оборудования, характером изменения во времени (переменные, условно-постоянные), обусловленности (нагрузочные, холостого хода, зависящие от климатических условий), административным делением и т. п.

Поэлементная структура технических потерь электроэнергии — представление технических потерь в виде составляющих, относящихся к каждому элементу электрической сети.

Допустимая фактическая погрешность системы учета электроэнергии — диапазон возможных значений погрешности системы учета электроэнергии, соответствующий фактическим характеристикам и режимам работы измерительных устройств, входящих в систему учета.

Нормативная погрешность системы учета электроэнергии — диапазон возможных значений погрешности системы учета электроэнергии, соответствующий нормативным (установленным ПУЭ и другими документами) характеристикам и режимам работы измерительных устройств, входящих в систему учета.

Фактический небаланс электроэнергии на объекте (ФНЭ) — разность между электроэнергией, поступившей на объект, и суммой трех составляющих: электроэнергии, отпущенной с объекта, расхода электроэнергии на СН подстанций и технических потерь в оборудовании объекта.
Примечание. Под объектом понимается любой комплекс электротехнических устройств, поступление электроэнергии на который и отпуск электроэнергии с которого фиксируются с помощью приборов учета (подстанция, сетевая организация и т. п.).

Технически допустимый небаланс электроэнергии (ТДН) — диапазон возможной разности между электроэнергией, поступившей на объект, и суммой указанных выше трех составляющих, определяемый допустимой погрешностью установленной на объекте системы учета электроэнергии.

Нормативный допустимый небаланс электроэнергии (НДН) — диапазон возможной разности между электроэнергией, поступившей на объект, и суммой указанных выше трех составляющих, определяемый нормативной погрешностью системы учета электроэнергии, соответствующей фактическим потокам электроэнергии через точки учета, и допустимым уровнем коммерческих потерь.

Анализ потерь электроэнергии — оценка приемлемости уровня потерь с экономической точки зрения, выявление причин превышения допустимых небалансов электроэнергии на объекте в целом и его частях, выявление территориальных зон, групп элементов и отдельных элементов с повышенными потерями (очагов потерь), определение количественного влияния на отчетные потери и их структурные составляющие параметров, характеризующих режимы передачи электроэнергии.

Читайте также:  Оао мрск центра костромаэнерго руководство

Мероприятие по снижению потерь электроэнергии (МСП) — мероприятие, проведение которого экономически оправдано за счет получаемого снижения потерь электроэнергии (в обосновании МСП приведены требуемые затраты, получаемая экономия электроэнергии, срок окупаемости затрат или другие показатели экономической эффективности).

Мероприятие с сопутствующим снижением потерь электроэнергии — мероприятие, проводимое для улучшения других показателей работы объекта (например, надежности) и приводящее к одновременному снижению потерь электроэнергии, затраты на которое не окупаются только за счет снижения потерь. Некоторые мероприятия могут приводить к сопутствующему увеличению потерь.

Резервы снижения потерь электроэнергии — снижение потерь, которое может быть получено при внедрении экономически обоснованных МСП.

Нормирование потерь электроэнергии — установление приемлемого (нормального) по техническим и экономическим критериям уровня потерь электроэнергии (норматива потерь), включаемого в тарифы на электроэнергию.

Нормативная характеристика технологических потерь электроэнергии (НХТП) — зависимость нормального уровня потерь электроэнергии от объемов ее поступления в сеть и отпуска из сети по точкам учета, отражаемым в балансе электроэнергии.

Помощь студентам

Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Примерная структура потерь
Примерная структура потерь

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.

Коронный разряд на изоляторе ЛЭП
Коронный разряд на изоляторе ЛЭП

Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Основные причины потерь электроэнергии

Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:

  1. Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
  • Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
  • Расход в трансформаторах, имеющий магнитную и электрическую природу ( ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.
Читайте также:  Стоимость киловатт часа в свердловской области
Потери в силовых трансформаторах подстанций
Потери в силовых трансформаторах подстанций

Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.

  1. Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
  • Холостая работа силовых установок.
  • Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
  • Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
  1. Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП.
    Гололед на ЛЭП
    Гололед на ЛЭП

Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Коммерческая составляющая

Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.

К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:

  • в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
  • неправильно указанный тариф;
  • отсутствие контроля за данными приборов учета;
  • ошибки, связанные с ранее откорректированными счетами и т.д.

Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.

Различают три способа хищения (занижения показаний прибора учета):

  1. Механический. Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
  2. Электрический. Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
  3. Магнитный. При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.
Читайте также:  Контрольные действия это и Контрольно-контрольная работа ;
Магнит может воздействовать только некоторые старые модели электросчетчиков
Магнит может воздействовать только некоторые старые модели электросчетчиков

Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

  • Оптимизация схемы и режима работы электросети.
  • Исследование статической устойчивости и выделение мощных узлов нагрузки.
  • Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
  • Оптимизация нагрузки трансформаторов.
  • Модернизация оборудования.
  • Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Методика и пример расчета потерь электроэнергии

На практике применяют следующие методики для определения потерь:

  • проведение оперативных вычислений;
  • суточный критерий;
  • вычисление средних нагрузок;
  • анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
  • обращение к обобщенным данным.

Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.

В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.

Как рассчитать потери в силовом трансформаторе
Расчет потерь в силовом трансформаторе

Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.

Параметры TM 630/6/0,4
Параметры TM 630/6/0,4

Теперь переходим к расчету.

Итоги расчета
Итоги расчета

Список использованной литературы

  • Ю. Железко «Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов» 2009
  • Поспелов Г.Е. «Потери мощности и энергии в электрических сетях» 1981
  • Шведов Г.В., Сипачева О.В., Савченко О.В. «Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение» 2013
  • Фурсанов М.И. «Определение и анализ потерь электроэнергии в электрических сетях энергосистем» 2005

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *